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Abstract
The problem of variable separation in the linear stability equations, which
govern the disturbance behaviour in viscous incompressible fluid flows, is
discussed. The so-called direct approach, in which a form of the ‘ansatz’ for
a solution with separated variables as well as a form of reduced ODEs are
postulated from the beginning, is applied. The results of application of the
method are the new coordinate systems and the most general forms of basic
flows, which permit the postulated form of separation of variables. Then the
basic flows are specified by the requirement that they themselves satisfy the
Navier–Stokes equations. Calculations are made for the (1+3)-dimensional
disturbance equations written in Cartesian and cylindrical coordinates. The
fluid dynamics interpretation and stability properties of some classes of the
exact solutions of the Navier–Stokes equations, defined as flows for which
the stability analysis can be reduced via separation of variables to the eigenvalue
problems of ordinary differential equations, are discussed. The eigenvalue
problems are solved numerically with the help of the spectral collocation
method based on Chebyshev polynomials. For some classes of perturbations,
the eigenvalue problems can be solved analytically. Those unique examples
of exact (explicit) solution of the nonparallel unsteady flow stability problems
provide a very useful test for numerical methods of solution of eigenvalue
problems, and for methods used in the hydrodynamic stability theory, in
general.
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1. Introduction

Problems of hydrodynamic stability are of great theoretical and practical interest, as evidenced
by the number of publications devoted to this subject. The linear stability theory (see, e.g.,
Drazin and Reid (1981)) for a particular flow starts with a solution of the equations of motion
representing this basic flow. One then considers this solution with a small perturbation
superimposed. Substituting the perturbed solution into the equations of motion and neglecting
all terms that involve the square of the perturbation amplitude yield the linear stability equations
which govern the behaviour of the perturbation. If the perturbation dies away the original flow
is said to be stable, and if the perturbation grows, the flow is said to be unstable. Whether
a small disturbance that is superimposed upon a known primary flow will be amplified or
damped depends on the pattern of the primary flow and the nature of the disturbance. The
linearization provides a means of allowing for the many different forms that the disturbance can
take. In the method of normal modes, small disturbances are resolved into modes, which may
be treated separately because each satisfies the linear equations and there are no interactions
between different modes.

Thus, the mathematical problem of the determination of stability of a given flow involves
deriving a set of perturbation equations obtained from the Navier–Stokes equations by
linearization around this basic flow and finding a set of possible solutions which would permit
splitting a perturbation into normal modes. For a steady-state basic flow, normal modes
depending on time exponentially, with a complex exponent λ, are permissible—the sign of the
real part of λ indicates whether the disturbance grows or decays in time. If further separation
of variables is possible, it makes the stability problem amenable to the normal mode analysis
in its common form when the problem reduces to that of solving a set of ordinary differential
equations. It can be done, however, only for basic flows of specific forms—mostly those are
the parallel flows or their axial symmetric counterparts. With the parallel flow assumption,
separation of variables in the governing stability equations leads to the fourth-order ordinary
differential equation, the Orr–Sommerfeld equation. When this equation is solved with proper
boundary conditions, the problem of linear stability of parallel flows is reduced to a 2-point
boundary (eigen) value problem.

For nonparallel basic flows, when the coefficients in the equations for disturbance flow are
dependent not only on the normal to the flow coordinate but also on the other coordinates, the
corresponding operator does not separate unless certain terms are ignored. The approximation,
which neglects the nonparallel terms and relates the stability characteristics to those of the
equivalent parallel flow has been extensively used for the stability analysis of the so-called
‘weakly nonparallel’ flows to retain the great advantage of reducing the disturbance equations
to ordinary differential equations (see review by Reed and Saric (1996)). Also a number
of approximate approaches, which seek to account for effects of non-parallelism through
equations including higher-order terms than those in the Orr–Sommerfeld equation, have been
developed (see reviews in Reed and Saric (1996), Herbert (1997), Fazel and Konzelmann
(1990), Govindarajan and Narishama (1999), Saric et al (2003)).

Laminar flows, that are observed in nature and laboratory, are never perfectly steady and
are often very unsteady. If the basic flow is non-steady, this brings about great difficulties in
theoretical studies of the instability since the normal modes containing an exponential time
factor exp(λt) are not applicable here (some success has been achieved in studying stability
of the time-periodic basic states when Floquet theory can be applied—see Drazin and Reid
(1981)). If an unsteady flow is non-parallel, it should further complicate matters. Therefore
stability of viscous incompressible flows developing both in space and time is a little studied
topic in the theory of hydrodynamic stability. As a matter of fact, there are no examples of the
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unsteady non-parallel solutions of the incompressible Navier–Stokes equations, for which the
corresponding linear stability problem is exactly solvable via separation of variables.

All the above said shows that the method of separation of variables is of a fundamental
importance for the hydrodynamic stability problems. Stability analysis based on this method
describes local behaviour or development of small disturbances with an eigensolution of
ordinary differential equations and therefore is free from the initial conditions under which
the disturbance is introduced into the flow. Reducing the disturbance equations from partial
differential equations to ordinary differential equations allows quick numerical solution. The
importance of the method of separation of variables is even more enhanced in the case of
time-dependent basic states when the method of normal modes is not applicable at all. Till
now, the method of separation of variables has been used for stability analysis in an intuitive
way which makes it generally applicable only to the stability problems of the steady-state
parallel flows.

Recently, the so-called direct approach to separation of variables in linear PDEs has been
developed by a proper formalizing of the features of the notion of separation of variables
(see, e.g., Zhdanov and Zhalij (1999a, 1999b)). In this approach, a form of the ‘Ansatz’
for a solution with separated variables as well as a form of reduced ODEs, which should be
obtained as a result of the variable separation, are postulated from the beginning. The method
has been successfully applied to several equations of mathematical physics (see, e.g., Zhalij
(1999), Zhdanov and Zhalij (1999a, 1999b), Zhalij (2002)).

In the present paper, we apply this approach to the linear stability equations which govern
the disturbance behaviour in viscous incompressible fluid flows. The calculations are made for
the linear stability equations written in Cartesian and cylindrical coordinates. The forms of the
Ansatz for the solutions with separated variables are chosen such that the perturbations written
in a new non-stationary coordinate system were periodic in two space-like coordinates. The
new coordinate systems and the most general forms of basic flows, which permit the postulated
form of separation of variables in the equations for disturbances, are determined as the result
of application of the method. Then the basic flows are specified by the requirement that they
exactly satisfy the Navier–Stokes equations.

Further we discuss the fluid dynamics interpretation and stability properties of some
classes of the exact solutions of the Navier–Stokes equations defined as flows for which the
stability analysis can be reduced via separation of variables to the eigenvalue problems of
ordinary differential equations. The eigenvalue problems were solved numerically with the
help of the spectral collocation method based on Chebyshev polynomials. It appears that
for some classes of perturbations, the eigenvalue problems can be solved analytically. Those
unique examples of exact (even explicit) solution of the nonparallel unsteady flow stability
problems provide a very useful test for numerical methods of solution of eigenvalue problems,
and for methods used in the hydrodynamic stability theory, in general.

2. Separation of variables in Cartesian coordinates

Throughout the paper we deal with the Navier–Stokes equations governing flows of
incompressible Newtonian fluids. Then the equation of motion and the equation of continuity
are

∂ v̂
∂t

+ (v̂∇) v̂ = − 1

ρ
∇p̂ + ν∇2v̂ and ∇v̂ = 0, (1)

where ρ is the constant density and ν is the constant kinematic viscosity of the fluid.
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As usual in the stability analysis, we split the velocity and pressure fields (v̂x, v̂y, v̂z, p̂)

into two problems: the basic flow problem (Vx, Vy, Vz, P ) and a perturbation one
(vx, vy, vz, p),

v̂x = Vx + vx, v̂y = Vy + vy, v̂z = Vz + vz, p̂ = P + p. (2)

Introducing (2) into the Navier–Stokes equations (1) and neglecting all terms that involve
the square of the perturbation amplitude, while imposing the requirement that the basic flow
variables (Vx, Vy, Vz, P ) themselves satisfy the Navier–Stokes equations, one arrives at the
following set of linear stability equations in the Cartesian coordinates:

∂vx

∂t
+ Vx

∂vx

∂x
+ vx

∂Vx

∂x
+ Vy

∂vx

∂y
+ vy

∂Vx

∂y
+ Vz

∂vx

∂z
+ vz

∂Vx

∂z

= − 1

ρ

∂p

∂x
+ ν

(
∂2vx

∂x2
+

∂2vx

∂y2
+

∂2vx

∂z2

)
,

∂vy

∂t
+ Vx

∂vy

∂x
+ vx

∂Vy

∂x
+ Vy

∂vy

∂y
+ vy

∂Vy

∂y
+ Vz

∂vy

∂z
+ vz

∂Vy

∂z

= − 1

ρ

∂p

∂y
+ ν

(
∂2vy

∂x2
+

∂2vy

∂y2
+

∂2vy

∂z2

)
, (3)

∂vz

∂t
+ Vx

∂vz

∂x
+ vx

∂Vz

∂x
+ Vy

∂vz

∂y
+ vy

∂Vz

∂y
+ Vz

∂vz

∂z
+ vz

∂Vz

∂z

= − 1

ρ

∂p

∂z
+ ν

(
∂2vz

∂x2
+

∂2vz

∂y2
+

∂2vz

∂z2

)
,

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0.

The system (3) has variable coefficients dependent on the basic flow velocity fields
Vx, Vy, Vz so that one cannot apply the standard Fourier transformation or classical normal
mode approach. A regular way for solving (3) is the method of separation of variables but,
in this respect, natural questions arise: which basic flows Vx, Vy, Vz allow separability of the
system (3) and what is the form of separable solutions? One of the principal objectives of the
present paper is to provide an efficient algorithm for answering these kinds of questions.

There are three important elements of the method of separation of variables for partial
differential equations. The first one is a choice of a special Ansatz for a class of particular
solutions to be found in a separated (factorized) form via several functions of one variable.
The second element is a requirement to have as an output of the whole procedure several
ordinary differential equations. The third important point is that the thus obtained solutions
depend on auxiliary parameters (separation constants). The principal idea of the approach
to separation of variables in partial differential equations suggested in Zhdanov and Zhalij
(1999a), Zhalij (2002) was to postulate these three features in order to develop a regular
procedure for obtaining solutions with separated variables.

Let us introduce a new coordinate system t, ξ = ξ(t, x), η = η(t, y), γ = γ (t, z). First,
we choose the Ansatz for a solution to be found

vx = T (t) exp(aξ + sγ + mS(t))h(η),

vy = T (t) exp(aξ + sγ + mS(t))f (η),
(4)

vz = T (t) exp(aξ + sγ + mS(t))g(η),

p = T1(t) exp(aξ + sγ + mS(t))k(η),
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where functions T (t), T1(t), S(t), ξ(t, x), η(t, y), γ (t, z) are not fixed a priori but chosen
in such a way that inserting the expressions (4) into system of PDEs (3) yields a system
of three second-order and one first-order ordinary differential equations for four functions
h(η), f (η), g(η), k(η). To get constraints on functions T , T1, S, ξ, η, γ we formalize a
reduction procedure as follows.

First, we postulate the form of the resulting system of ordinary differential equations as
follows:

h′′(η) = U11g
′(η) + U12h

′(η) + U13k
′(η) + U14f (η) + U15g(η) + U16h(η) + U17k(η),

f ′′(η) = U21g
′(η) + U22h

′(η) + U23k
′(η) + U24f (η) + U25g(η) + U26h(η) + U27k(η),

(5)
g′′(η) = U31g

′(η) + U32h
′(η) + U33k

′(η) + U34f (η) + U35g(η) + U36h(η) + U37k(η),

f ′(η) = U41f (η) + U42g(η) + U43h(η) + U44k(η).

Here Uij are second-order polynomials with respect to spectral parameters a, s,m with
coefficients, which are some smooth functions on η and should be determined on the next
steps of the algorithm. Next, we insert the expressions (4) into (3) which yields a system
of PDEs containing the functions ξ, η, γ and their first- and second-order partial derivatives,
and the functions f (η), g(η), k(η) and their derivatives. Further we replace the derivatives
h′′(η), f ′′(η), g′′(η), f ′(η) by the corresponding expressions from the right-hand sides of (5).

Now we regard h′(η), g′(η), k′(η), h(η), f (η), g(η), k(η) as the new independent
variables. As the functions ξ(x, t), η(y, t), γ (z, t), T (t), T1(t), S(t), basic flows Vx, Vy, Vz

and coefficients of the polynomials Uij (which are functions of η) are independent of these
variables, we can require that the obtained equality is transformed into identity under arbitrary
h′(η), g′(η), k′(η), h(η), f (η), g(η), k(η). In other words, we should split the equality with
respect to these variables. After splitting we get an overdetermined system of nonlinear
partial differential equations for unknown functions ξ(x, t), η(y, t), γ (z, t), T (t), T1(t), S(t),
basic flows Vx, Vy, Vz and coefficients of the polynomials Uij . At the last step we solve the
above system to get an exhaustive description of coordinate systems providing separability of
equations (3), as well as all possible basic flows Vx, Vy, Vz such that the system (3) is solvable
by the method of separation of variables.

Thus, the problem of variable separation in equation (3) reduces to integrating
the overdetermined system of PDEs for unknown functions ξ(x, t), η(y, t), γ (z, t), T (t),
T1(t), S(t), basic flows Vx, Vy, Vz and coefficients of the polynomials Uij . This has been done
with the aid of Mathematica package.

Below we list the results.
The most general form of the basic flow is:

Vx = νA(η)T (t) − c′
1(t) + xT ′(t)

T (t)
,

Vy = νB(η)T (t) − c′
2(t) + yT ′(t)

T (t)
,

Vz = νC(η)T (t) − c′
3(t) + zT ′(t)

T (t)
.

The forms of the perturbations vx, vy, vz and p are:

vx = T (t) exp

(
aξ + sγ + m

∫
T (t)2 dt

)
h(η),

vy = T (t) exp

(
aξ + sγ + m

∫
T (t)2 dt

)
f (η),
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vz = T (t) exp

(
aξ + sγ + m

∫
T (t)2 dt

)
g(η),

p = ρT (t)2 exp

(
aξ + sγ + m

∫
T (t)2 dt

)
k(η),

where

ξ = T (t)x + c1(t), η = T (t)y + c2(t), γ = T (t)z + c3(t).

The equations with separated variables are

(m − a2ν − s2ν + aνA(η) + sνC(η))h(η) + ak(η) + ν(f (η)A′(η) + B(η)h′(η) − h′′(η))= 0,

f (η)(m − a2ν − s2ν + aνA(η) + sνC(η) + νB ′(η)) + νB(η)f ′(η) + k′(η) − νf ′′(η) = 0,

(m − a2ν − s2ν + aνA(η) + sνC(η))g(η) + sk(η) + ν(f (η)C ′(η) + B(η)g′(η) − g′′(η))= 0,

sg(η) + ah(η) + f ′(η) = 0.

The restrictions on the forms of the basic flows following from the requirement that they
themselves satisfy the Navier–Stokes equations lead to the two following cases:

Case I

ξ = 1√
t
x + c1(t), η = 1√

t
y + c2(t), γ = 1√

t
z + c3(t); (6)

Vx = x

2t
+ νA(η)

1√
t

− c′
1(t)

√
t,

Vy = −y

t
− 1√

t

(
tc′

2(t) +
3

2
c2(t)

)
, (7)

Vz = z

2t
+ νC(η)

1√
t

− c′
3(t)

√
t,

and the functions A(x) and C(x) satisfy the equations

3A′(η) + 3ηA′′(η) + 2νA′′′(η) = 0, (8)

3C ′(η) + 3ηC ′′(η) + 2νC ′′′(η) = 0, (9)

which can be solved in terms of the error functions and the generalized hypergeometric
functions (see section 4).

For this case the separation Ansatz takes the form

vx = t s eaξ+mγ f (η), (10)

vy = t s eaξ+mγ g(η), (11)

vz = t s eaξ+mγ h(η), (12)

p = ρts−1/2 eaξ+mγ π(η). (13)

Case II
ξ = x + c1(t), η = y + c2(t), γ = z + c3(t);
Vx = A1η

2 + A2η − c′
1(t), Vy = −c′

2(t), Vz = C1η
2 + C2η − c′

3(t).

For this case the separation Ansatz is

vx = eaξ+sγ +mtf (η), vy = eaξ+sγ +mtg(η),

vz = eaξ+sγ +mth(η), p = ρ eaξ+sγ +mtπ(η).
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3. Separation of variables in cylindrical coordinates

The Navier–Stokes equations in cylindrical coordinates (r, ϕ, z) are:

∂v̂r

∂t
+ v̂r

∂v̂r

∂r
+

v̂ϕ

r

∂v̂r

∂ϕ
− v̂2

ϕ

r
+ v̂z

∂v̂r

∂z

= − 1

ρ

∂p̂

∂r
+ ν

(
∂2v̂r

∂r2
+

1

r

∂v̂r

∂r
− v̂r

r2
+

1

r2

∂2v̂r

∂ϕ2
− 2

r2

∂v̂ϕ

∂ϕ
+

∂2v̂r

∂z2

)
,

∂v̂ϕ

∂t
+ v̂r

∂v̂ϕ

∂r
+

v̂ϕ

r

∂v̂ϕ

∂ϕ
+

v̂r v̂ϕ

r
+ v̂z

∂v̂ϕ

∂z
(14)

= − 1

ρr

∂p̂

∂ϕ
+ ν

(
∂2v̂ϕ

∂r2
+

1

r

∂v̂ϕ

∂r
− v̂ϕ

r2
+

1

r2

∂2v̂ϕ

∂ϕ2
+

2

r2

∂v̂r

∂ϕ
+

∂2v̂ϕ

∂z2

)
,

∂v̂z

∂t
+ v̂r

∂v̂z

∂r
+

v̂ϕ

r

∂v̂z

∂ϕ
+ v̂z

∂v̂z

∂z

= − 1

ρ

∂p̂

∂z
+ ν

(
∂2v̂z

∂r2
+

1

r

∂v̂z

∂r
+

1

r2

∂2v̂z

∂ϕ2
+

∂2v̂z

∂z2

)
,

∂v̂r

∂r
+

v̂r

r
+

1

r

∂v̂ϕ

∂ϕ
+

∂v̂z

∂z
= 0,

where v̂r , v̂ϕ, v̂z, p̂ are the velocity and pressure fields. We split them into the basic flow and
perturbation parts

v̂r = Vr + vr, v̂ϕ = Vϕ + vϕ, v̂z = Vz + vz, p̂ = P + p, (15)

where Vr, Vϕ, Vz, P are the basic flow fields and vr, vϕ, vz, p are the perturbations.
Substituting (2) into (14) with subsequent linearization with respect to the perturbations
yields
∂vr

∂t
+ Vr

∂vr

∂r
+ vr

∂Vr

∂r
+

Vϕ

r

∂vr

∂ϕ
+

vϕ

r

∂Vr

∂ϕ
+ Vz

∂vr

∂z
+ vz

∂Vr

∂z
− 2

Vϕvϕ

r

= − 1

ρ

∂p

∂r
+ ν

(
∂2vr

∂r2
+

1

r2

∂2vr

∂ϕ2
+

∂2vr

∂z2
+

1

r

∂vr

∂r
− 2

r2

∂vϕ

∂ϕ
− vr

r2

)
,

∂vϕ

∂t
+ Vr

∂vϕ

∂r
+ vr

∂Vϕ

∂r
+

Vϕ

r

∂vϕ

∂ϕ
+

vϕ

r

∂Vϕ

∂ϕ
+ Vz

∂vϕ

∂z
+ vz

∂Vϕ

∂z
+

Vrvϕ

r
+

vrVϕ

r
(16)

= − 1

ρr

∂p

∂ϕ
+ ν

(
∂2vϕ

∂r2
+

1

r2

∂2vϕ

∂ϕ2
+

∂2vϕ

∂z2
+

1

r

∂vϕ

∂r
+

2

r2

∂vr

∂ϕ
− vϕ

r2

)
,

∂vz

∂t
+ Vr

∂vz

∂r
+ vr

∂Vz

∂r
+

Vϕ

r

∂vz

∂ϕ
+

vϕ

r

∂Vz

∂ϕ
+ Vz

∂vz

∂z
+ vz

∂Vz

∂z

= − 1

ρ

∂p

∂z
+ ν

(
∂2vz

∂r2
+

1

r2

∂2vz

∂ϕ2
+

∂2vz

∂z2
+

1

r

∂vz

∂r

)
,

∂vr

∂r
+

1

r

∂vϕ

∂ϕ
+

∂vz

∂z
+

vr

r
= 0.

The definition and algorithm for separation of variables in the non-stationary cylindrical
coordinate system are similar to those described in the previous section for the Cartesian
coordinate system. Below we show the results.

The most general form of the basic flow is:

Vz = A(ξ)T (t) − c′(t) + zT ′(t)
T (t)

, Vr = B(ξ)T (t) − r
T ′(t)
T (t)

, Vϕ = C(ξ)T (t),

(17)
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where

ξ = T (t)r, η = T (t)z + c(t). (18)

The forms of the perturbations vr, vϕ, vz and p are:

vr = T (t) exp

(
aη + mϕ + s

∫
T (t)2 dt

)
f (ξ),

vϕ = T (t) exp

(
aη + mϕ + s

∫
T (t)2 dt

)
g(ξ),

(19)

vz = T (t) exp

(
aη + mϕ + s

∫
T (t)2 dt

)
h(ξ),

p = ρT (t)2 exp

(
aη + mϕ + s

∫
T (t)2 dt

)
π(ξ).

The equations with separated variables are

f (ξ)(ξ 2s + ν − m2ν − a2ξ 2ν + aξ 2A(ξ) + mξC(ξ) + ξ 2B ′(ξ)) + 2(mν − ξC(ξ))g(ξ)

+ ξ((−ν + ξB(ξ))f ′(ξ) + ξ(π ′(ξ) − νf ′′(ξ))) = 0,

(ξ 2s + ν − m2ν − a2ξ 2ν + aξ 2A(ξ) + ξB(ξ) + mξC(ξ))g(ξ) + f (ξ)(−2mν + ξC(ξ)

+ ξ 2C ′(ξ)) + ξ(mπ(ξ) + (−ν + ξB(ξ))g′(ξ) − ξνg′′(ξ)) = 0,

(ξ 2s − m2ν − a2ξ 2ν + aξ 2A(ξ) + mξC(ξ))h(ξ) + ξ(aξπ(ξ) + ξf (ξ)A′(ξ) − νh′(ξ)

+ ξB(ξ)h′(ξ) − ξνh′′(ξ)) = 0,

f (ξ) + mg(ξ) + ξ(ah(ξ) + f ′(ξ)) = 0.

The restrictions on the forms of the basic flows following from the requirement that they
satisfy Navier–Stokes equations lead to the two following cases:

Case I

T (t) = 1√
t
, B(ξ) = −3ξ

4
+

k

ξ
(20)

and the functions A(ξ) and C(ξ) satisfy the equations

(4k + 3ξ 2 − 4ν)A′(ξ) + ξ(−4k + 3ξ 2 + 4ν)A′′(ξ) + 4ξ 2νA′′′(ξ) = 0,

(4k + 3ξ 2 + 4ν)C(ξ) + ξ(−4k + 9ξ 2 − 4ν)C ′(ξ)

+ ξ(−4k + 3ξ 2 + 8ν)C ′′(ξ) + 4ξ 2νC ′′′(ξ) = 0.

These ODEs can be explicitly solved to give

A(ξ) = C1 + C2


(
k

2ν
,

3ξ 2

8ν

)
+ C3

∫
e− 3ξ2

8ν ξ
k
ν
−1


(
1 − k

2ν
,−3ξ 2

8ν

)
dξ

C(ξ) = 1

ξ

(
C4 + C5


(
1 +

k

2ν
,

3ξ 2

8ν

)
+ C6

∫
e− 3ξ2

8ν ξ
k
ν

+1


(
− k

2ν
,−3ξ 2

8ν

)
dξ

)
where 
(A,Z) is the incomplete Gamma function and C1, . . . , C6 are arbitrary constants.

Case II

T (t) = 1, B(ξ) = k

ξ
. (21)
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Functions A(ξ) and C(ξ) satisfy the equations

(k − ν)A′(ξ) + ξ(−k + ν)A′′(ξ) + ξ 2νA′′′(ξ) = 0,

(k + ν)C(ξ) − ξ(k + ν)C ′(ξ) − ξ 2(k − 2ν)C ′′(ξ) + r3νC ′′′(ξ) = 0.

These ODEs can be explicitly solved in elementary functions. Two cases should be considered:
k �= 0 and k = 0.

Case IIa: k �= 0.

A(ξ) = C1ξ
k
ν + C2ξ

2 + C3 C(ξ) = C4ξ
k
ν

+1 + C5ξ
−1 + C6ξ.

Case IIb: k = 0.

A(ξ) = C1 ln ξ + C2ξ
2 + C3 C(ξ) = C4ξ ln ξ + C5ξ

−1 + C6ξ.

4. Stability of some unsteady nonparallel flows

In this section, we discuss the fluid dynamics interpretation and stability properties of the exact
solutions of the Navier–Stokes equations defined above as basic flows possessing separable
stability problems.

4.1. Cartesian coordinates

We will consider the class of solutions in Cartesian coordinates identified in section 2 as case
I. We will specify the solutions (6)–(9) by setting c1(t) = c2(t) = c3(t) = 0 but will use a
possibility to enrich the solutions by a shift of the time variable. Making change of variables
t = t ′ − 1/b, where b is a constant, and omitting primes in what follows, we will have the
solution of the Navier–Stokes equations in Cartesian coordinates in the form

Vx = 1√
1 − bt

(
−bξ

2
+ νA(η)

)
,

Vy = bη√
1 − bt

,

(22)

Vz = 1√
1 − bt

(
−bζ

2
+ νC(η)

)
,

P

ρ
= 1

1 − bt

(
b2

8
(ξ 2 + ζ 2 − 8η2) − 2ν2 (A3ξ + C3ζ )

)
,

where

ξ = x√
1 − bt

, η = y√
1 − bt

, ζ = z√
1 − bt

(23)

and b can be both positive and negative. The functions A(η) and C(η) are given by

A(η) = A1 + A2erf

(√
3
√−b

2
√

ν
η

)
+ A3η

2
2F2

(
1, 1; 3

2
, 2; 3bη2

4ν

)
(24)

C(η) = C1 + C2erf

(√
3
√−b

2
√

ν
η

)
+ C3η

2
2F2

(
1, 1; 3

2
, 2; 3bη2

4ν

)
,

where erf(z) is the error function, 2F2(z) is the generalized hypergeometric function and
A1, A2, A3 and C1, C2, C3 are arbitrary constants.
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The correspondingly specified perturbations (10) take the forms

vx = (1 − bt)s exp (i(αξ + βζ)) f (η),

vy = (1 − bt)s exp (i (αξ + βζ)) g(η),
(25)

vz = (1 − bt)s exp (i (αξ + βζ)) h(η),
p

ρ
= (1 − bt)s−1/2 exp (i (αξ + βζ)) π(η).

The equations for the perturbation amplitudes are

iαπ(η) + νA′(η)g(η) +

(
−b

2
− bs + ν(α2 + β2) + iν (αA(η) + βC(η))

)
f (η)

+
3

2
bηf ′(η) − νf ′′(η) = 0,

π ′(η) + (b − bs + ν(α2 + β2) + iν(αA(η) + βC(η)))g(η) +
3

2
bηg′(η) − νg′′(η) = 0,

(26)

iβπ(η) + νC ′(η)g(η) +

(
−b

2
− bs + ν(α2 + β2) + iν(αA(η) + βC(η))

)
h(η)

+
3

2
bηh′(η) − νh′′(η) = 0,

i(αf (η) + βh(η)) + g′(η) = 0.

The above formulae (22)–(26) remain valid if we introduce the nondimensional variables,
with the time scale 1/|b| and the correspondingly defined velocity scale. In the dimensionless
equations (we will retain the same notation for the nondimensional variables), the parameter
b takes one of the two values: b = 1 or b = −1, and ν is replaced by 1/Re where Re is
the Reynolds number. (If we mark the dimensional variables with stars, the Reynolds number
will be Re = L∗2|b∗|/ν∗ where L∗ is the length scale.)

Note that the solution (22)–(24) for b = 1 undergoes the finite-time ‘breakdown’ (see,
e.g., Duck and Dry (2001), Hall et al (1992)) and the ‘normal mode’ forms (25) are naturally
adjusted to the description of the disturbed flow as the breakdown time t = 1 is approached.

Next we will consider several two-point boundary value problems, corresponding to
different specifications of the basic flow solution (22)–(24), and the results of their analytical
and numerical solution allowing assessment of stability of those flows.

4.1.1. Specifications of the basic flow solution. We will consider the solution (22)–(24) for the
case of b = −1 which allows interpretations corresponding to unsteady flows near stretching
(impermeable or permeable) surfaces or the flows that develop within a channel possessing
permeable, moving walls. It is worth remarking that the considered flows are essentially
nonparallel—the flow fields (22)–(23) include all three velocity components dependent on all
coordinates.

(i) Stagnation-point flow towards stretching surface or impingement of two opposite
stagnation point flows. These are the simplest basic flows, obtained from (22)–(24)
by setting A(η) = C(η) = 0. It is easily seen that they are axially symmetric with respect
to the y-axis. The solution can be interpreted as the unsteady stagnation point flow where
fluid flowing axially from infinity along the y-axis approaches the rigid surface y = 0
stretching radially in its plane (state-state counterparts of this problem were considered in
Chiam (1996), Mahapatra and Gupta (2002, 2003), Dauenhauer and Majdalani (2003)).
Another possible interpretation is an impingement of two axially symmetric stagnation
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point flows approaching the plane y = 0 from ±∞ and spreading along it. In both cases,
the boundary conditions to equations (26) for perturbations are set at η = 0 and η = ∞,
as follows:

f (0) = 0, g(0) = 0, h(0) = 0, f, g, h are bounded at infinity. (27)

(ii) Flow in an expanding channel. In this case the fluid is confined in the space between
y = 1 and y = H(t). The channel width changes with time as H = √

1 + t (in the
dimensional variables, marked with stars, it is H ∗ = H ∗

0

√
1 − b∗t∗, where b∗ < 0, and

the value H ∗
0 is used as a length scale for the nondimensional variables while the time scale

is 1/|b∗|). The surfaces stretch radially from the y-axis according to the law Vr = Kr

where Vr = (
V 2

x + V 2
z

)1/2
, r = (x2 + z2)1/2 and K = 1

2 (1 + t)−1. There is an injection
of fluid through the porous channel surface at y = H , which may be either normal to the
surface or oblique—the direction of blowing depends on the values of constants in (24).
The blowing velocity varies with time as Vb = V0(1+ t)−1/2, where V0 is a constant. From
(24) and the no-slip conditions at the surfaces y = 1 and y = H we get for A(η), which
defines the additional flow due to the pressure gradient along the x-axis, the following:

A(η) = U0

(
erf

(√
3Re

2
η

)
− η2erf

(√
3Re
2

)
2F2

(
1, 1; 3

2 , 2; −3η2Re

4

)
2F2

(
1, 1; 3

2 , 2; −3Re
4

)
)

(28)

where U0 is a constant defining the magnitude of the additional flow velocity. For large
Re,A(η) becomes close to U0 almost in all the channel.

The boundary conditions for the perturbation amplitudes are set at the surfaces η = 0 and
η = 1, as follows:

f (0) = 0, g(0) = 0, h(0) = 0, f (1) = 0, g(1) = 0, h(1) = 0. (29)

We will make some remarks on the practical and physical relevance of the basic flows
considered in the present paper.

The flow and heat transfer occurring within a liquid film on a stretching surface is often
encountered in many engineering disciplines. Applications include extrusion process, wire and
fibre coating, polymer processing, foodstuff processing, design of various heat exchangers and
chemical processing equipment, etc. For example, in a melt-spinning process, the extrudate
from the die is generally drawn and simultaneously stretched into a filament or sheet, which
is then solidified through rapid quenching or gradual cooling by direct contact with water.
Stretching will bring in a unidirectional orientation to the extrudate; consequently, the quality
of the final product considerably depends on the flow and heat transfer mechanism. Therefore,
the analysis of momentum and thermal transports within a liquid film on a continuously
stretching surface is important for gaining some fundamental understanding of such processes.
A relevant kind of flow problem is that the flow and heat transfer from a stretching sheet in
the infinite surrounding fluid medium. A literature on the subject (see, e.g., the book by Pop
and Ingham (2001)) shows considerable research activities in this area.

The basic flows considered in the present paper obey the law for the sheet velocity
U(x, t) = kx/(1 − bt). It reflects that the elastic sheet, which is fixed at the origin, is
stretched by applying a force in the positive x-direction and the effective stretching rate varies
with time as k/(1 − bt). This law for the sheet velocity may seem quite special. Nevertheless,
it is commonly accepted in the studies of the momentum and heat transfer over an unsteady
stretching surface (see, e.g., Andersson et al (2000), Chen (2003), Dandapat et al (2003),
Devi et al (1986), Elbashbeshy and Basid (2004), Lakshmisha et al (1988), Takhar and Nath
(1996), Usha and Sridharan (1995)). The reasoning behind this is that the flows obtained with
this law represent similarity solutions of the Navier–Stokes or/and boundary layer equations



7152 A Zhalij et al

(systematic methods for finding such solutions are used, for example, in Ma and Hui (1990),
Burde (1995a, 1995b)). It is known that similarity solutions often reflect an asymptotic
behaviour of more complicated flows—for example, the similarity solutions of the boundary
layer equations serve as asymptotic limit for large distances from the leading edge (see, e.g.,
Schlichting (1968)). Similarly, one may expect that the flows considered in the present and
the above-cited papers might represent as asymptotic limit of the more complicated flows over
a stretching surface for large times.

Laminar, incompressible and time-dependent flows that develop within a channel
possessing permeable, moving walls have also received considerable attention in the past
due to their relevance in a number of engineering applications. Solutions for the physical
situations, similar to those considered in the present paper, which pertain to a pipe that exhibits
either injection or suction across porous boundaries while undergoing uniform expansion or
contraction may be found, for example, in Uchida and Aoki (1977), Dauenhauer and Majdalani
(2003).

4.1.2. Solutions of stability problems. We choose as a criterion for stability that the ratio
of the magnitude of a perturbation to that of a basic flow decreases with time, which for the
solutions (22)–(23) and (25) leads to

Re
(
s + 1

2

)
< 0 or Re(s) < − 1

2 (30)

where Re(s) denotes a real part of the eigenvalue s (the imaginary part Im(s), if nonzero,
determines the oscillation frequency). In particular, for the decelerating flow (b = −1)

the meaning of instability implies that even any disturbance is damped (Re(s) < 0 for the
velocity perturbations and Re(s) < 1/2 for the pressure perturbations) yet it may dominate
the decelerating flow after sufficient time if Re(s) > −1/2. It is also seen that the condition
(30) unifies the stability criterion for the velocity and pressure perturbations.

The eigenvalue problems were solved numerically with the help of the spectral collocation
method based on Chebyshev polynomials. Applications of Chebyshev spectral methods to
hydrodynamic stability problems have brought out the high degree of accuracy achievable
using spectral methods (see, e.g., Khorrami et al (1989), Schmid and Henningson (2001)
and references therein). Among different possible formulations, a spectral collocation method
appears more attractive since a computational algorithm based on that method does not require
major modifications from case to case and at the same time the computations are accurate
and efficient. Although the spectral collocation technique has been applied to the shear
flow stability problems (mainly, to the Orr–Sommerfeld equation), there were no previous
applications of the method to the type of problems discussed in this paper. Therefore a
Chebyshev collocation matrix algorithm has been constructed for the boundary value problems
considered in the paper and the corresponding Fortran computer routine has been designed.
Through numerous test cases which, in particular, examined plane Poiseuille flow and Blasius
flow, we have shown that the developed algorithm produces accurate global eigenvalues for
each case.

For some classes of perturbations, the eigenvalue problems can be solved analytically (see
below) which provides an additional, probably the most important, testing of the numerical
results.

To specify the stability problem for the basic flows described in section 4.1.1, it should
be set b = −1 and ν = 1/Re in equations for perturbations (26).

It can be shown that there exists a transformation (similar in a sense to Squire’s
transformation, Drazin and Reid (1981)) such that the three-dimensional problem defined
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by equations (26) can be reduced to an equivalent two-dimensional problem. If we let

α̃ = (α2 + β2)1/2, s̃ = s,

f (η) = 1

α̃
(αf̃ (η) − βh̃(η)), h(η) = 1

α̃
(αh̃(η) + βf̃ (η)),

g(η) = g̃(η), µ(η) = µ̃(η),

A(η) = 1

α̃
(αÃ(η) − βC̃(η)), C(η) = 1

α̃
(αC̃(η) + βÃ(η))

(31)

then equations (26) can be combined to give the equations in the transformed variables
which have exactly the same mathematical form as the original equations with β = 0 and
thus define the equivalent two-dimensional problem. It is sufficient, therefore, to consider
only two-dimensional disturbances: for, once the solutions of equations (26) with β = 0
have been obtained, we can immediately obtain the corresponding solution of the equivalent
two-dimensional problem (by a trivial change of notation) and from this, by means of the
transformation (31), we can then obtain the solution of the original three-dimensional problem.

Equations (26) with β = 0 can be reduced to a system of two equations for two functions
g(η) and h(η) of the form

α(αb − αbs + α3ν + iν(α2A(η) + A′′(η)))g(η) + 3
2bα2ηg′(η) − (b − bs + 2α2ν

+ iανA(η))g′′(η) − 3
2bηg′′′(η) + νg(IV)(η) = 0 (32)

νC ′(η)g(η) +
(− 1

2b − bs + α2ν + iανA(η)
)
h(η) + 3

2bηh′(η) − νh′′(η) = 0. (33)

It is seen that for C(η) = 0 the system of equations (32) and (33) decouples into two
separate equations for g(η) and h(η). Thus, in this case two separate branches exist, the first of
which corresponds to the disturbances with one z-component of the velocity vector changing
with x and y, while the second branch corresponds to the two-dimensional disturbances with
velocity vector lying in the (x, y) plane and not dependent on z.

In the case where both A(η) = 0 and C(η) = 0 equations (32) and (33) can be solved in
quadratures in terms of confluent hypergeometric functions. Each of equations can be reduced
to Kummer’s equation (Abramowitz and Stegun 1965)

Z
d2W

dZ2
+ (B − Z)

dW

dZ
− QW = 0, (34)

where

Z = −3η2

4ν
, B = 1

2
for both equations, (35)

W = g′′(η) − α2g(η), Q = −1

3
(−1 + s + α2ν) for equation (32), (36)

W = h(η), Q = −1

3

(
1

2
+ s + α2ν

)
for equation (33). (37)

A general solution of Kummer’s equation (34) can be taken in the form

W = C1M(Q,B,Z) + C2Z
1−BM(1 + Q − B, 2 − B,Z), (38)

where M(Q,B,Z) is the Kummer confluent hypergeometric function and C1 and C2 are
arbitrary constants.

Let us consider the perturbation mode with one z-component of the velocity vector
changing with x and y which corresponds to g(η) = f (η) = 0 and h(η) determined by (34),
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(35), (37) and (38). The boundary condition h(0) = 0 requires C1 = 0 since M(Q,B, 0) = 1
(Abramowitz and Stegun 1965) so that the solution for h(η) satisfying equation (33) and the
boundary condition at η = 0 takes the form

h(η) = ηM

(
1

3
(1 − s − α2ν),

3

2
,−3η2

4ν

)
. (39)

Using (39) in the second boundary condition leads to a transcendental equation determining
eigenvalues s for each α and ν = 1/Re (here Re is the Reynolds number).

In the cases where the second boundary condition is set at infinity (for example, a
stagnation point flow to a stretching surface), one can use a limiting form of Kummer’s
function (Abramowitz and Stegun 1965),

M(a, b, z) = 
(b)


(b − a)
(−z)−a(1 + O(|z|−1)) (Re(z) < 0). (40)

Then the condition that the perturbations h(η) are bounded at infinity applied to (39) with the
use of (40) gives a continuous real spectrum defined by

s � − α2

Re
− 1

2
. (41)

Comparing this with (30) we can conclude that the axially symmetric flow defined by (22)–(23)
with A(η) = C(η) = 0 in the semi-infinite domain is stable with respect to the perturbations
having only z-velocity component dependent on x and y.

Similar arguments can be applied to the second perturbation mode (the two-dimensional
disturbances with velocity vector lying in the (x, y) plane and not dependent on z), which
corresponds to h(η) = 0, g(η) determined by (34), (35), (36) and (38) and f (η) defined by the
last equation of (26) with β = 0. Using the limiting form of Kummer’s function (40) together
with the condition that the perturbations are bounded at infinity yields

s � 1 − α2

Re
or s +

1

2
� 3

2
− α2

Re
. (42)

Applying criterion (30) we can see that the axially symmetric flow defined by (22)–(23) with
A(η) = C(η) = 0 in the semi-infinite domain may be unstable with respect to the two-
dimensional perturbations if 3/2 − α2/Re > 0. Thus, the instability region is determined
by

α <

√
3

2
Re1/2. (43)

In the case of a channel flow, when the second boundary condition for each component
is set at the wall η = 1, the eigenvalues form a discrete spectrum. For the first perturbation
mode, for example, it is found from the transcendental equation

M

(
1

3

(
1 − s − α2

Re

)
,

3

2
,−3Re

4

)
= 0 (44)

obtained by applying the condition h(1) = 0 to (39). Note, however, that analysis of stability
of the channel flow, in general, should include the cases when the basic flow, in addition to
an axially symmetric part, includes a parallel flow with A(η) and C(η) defined as in (28).
The solution of the corresponding eigenvalue problem can be obtained only with the use of a
numerical method. We do not consider those results not to overload the presentation—similar
results for a flow within a cylinder are discussed below.

Nevertheless, it should be emphasized that the analytical results like (44) provide a very
useful test for numerical methods of solution of eigenvalue problems and for methods used in



Separation of variables in the hydrodynamic stability equations 7155

-10 10

10

Figure 1. Unsteady axially symmetric stagnation point flow: b = −1.

the hydrodynamic stability theory, in general. Testing the spectral collocation method used in
the present work with (44) showed that the method can reproduce the analytical results with
high accuracy.

4.2. Cylindrical coordinates

Here we will consider the class of solutions of the Navier–Stokes equations in cylindrical
coordinates identified in section 3 as case I, which is similar in many features to the class
of solutions in Cartesian coordinates considered in the previous section. Therefore, we will
not write out the solutions for the basic flow and perturbations and will not present detailed
formulations of the stability problems. We will only state that the solution in cylindrical
coordinates can be enriched by a shift of the time variable, like as it has been done for the
solution in Cartesian coordinates. Again, all the formulae remain valid if we introduce the
nondimensional variables, with the time scale 1/|b| and the correspondingly defined velocity
scale. Then, in the dimensionless equations, the parameter b takes one of the two values:
b = 1 and b = −1, and ν is replaced by 1/Re where Re is the Reynolds number. We will
again restrict ourselves to the case of b = −1.

4.2.1. Interpretations of the basic flow solution. The basic flow solution in cylindrical
coordinates permits interpretations similar to those considered above for the solution in
Cartesian coordinates. However, the cylindrical geometry and presence of the additional
free parameters k (see equation (20)) allows one to find more problem formulations and enrich
the problem definitions. The basic flow might be again an unsteady axially symmetrical
stagnation-point type flow, with the flow velocity decreasing with time as (1 + t)−1, but, as
distinct from the flows considered in the previous section; here fluid flows radially from infinity
approaching the axis and spreading along it (figure 1).

The basic flow might be an unsteady flow inside an expanding stretching cylinder, which
may also rotate, and there is an injection of fluid through the porous pipe surface. Such a flow
without rotation is shown in figure 2 where the meaning of U0 is similar to that in (28)—it is
a constant defining a relative magnitude of the part of the flow caused by the axial pressure
gradient.

It is seen from figures 1 and 2 that the considered flows are essentially nonparallel.
Other basic flow specifications include a flow outside an expanding stretching cylinder (both
impermeable and permeable), which can also rotate, and flows in the gap between concentric
cylinders—here again the cylinders may be permeable or not permeable and may rotate or not
rotate.
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Figure 2. Flow inside an expanding porous cylinder for Re = 100 and U0 = 5 at different time
moments: (a) t = 0, (b) t = 1.

4.2.2. Solutions of stability problems. The time dependence of the basic flow and perturbation
solutions in cylindrical coordinates is similar to that of the solutions (22)–(23) and (25).
Therefore a criterion for stability coincides with that given by (30).

There is an important point in which the stability problems in cylindrical coordinates differ
from those in Cartesian coordinates: a transformation, similar to Squire’s transformation,
which reduces the three-dimensional perturbation problem to an equivalent two-dimensional
problem, does not exist. Therefore, in general, one has to consider the three-dimensional
perturbations to assess the flow stability. Nevertheless, as usual in the stability analysis (see,
e.g., Drazin and Reid (1981), Schmid and Henningson (2001)), it is useful to study stability
properties with respect to the two-dimensional or axisymmetric perturbations since it enables
one to show that the flow is susceptible (or not susceptible) to a special kind of instability. For
some of the flows considered here, the eigenvalue problems restricted to the two-dimensional
or axisymmetric perturbations are amenable to analytical solution which allows one to obtain
exact results similar to those given by (39) and (41)–(44)).

Below we present the results of numerical solution of the eigenvalue problems for
the most general three-dimensional perturbations. We will restrict ourselves to considering
the unsteady nonparallel flows developing within expanding pipe in order not to overload the
presentation.

First, the analysis shows that the flow within not rotating cylinder and in the absence of
the axial pressure gradient is stable—one can see this in figure 3 where contours of constant
(relative) growth rate S = Re(s) + 1/2 are shown on the plane (Re, α). Since it is not Re(s)
but S = Re(s)+1/2, whose values are shown in this and subsequent figures, unstable solutions
correspond to S > 0 and stable ones to S < 0 while the neutral curve (if exists) is the contour
of S = 0. In figure 3, unstable solutions do not exist in all the parameter space. All the
eigenvalues are real so that the disturbances decay monotonically.

The contours of positive values of S appear in figure 4 which corresponds to the situation
when the basic flow includes the part due to the axial pressure gradient (U0 �= 0). The neutral
curve S = 0 separates the regions of stability and instability. It is seen that for any Reynolds
number larger than some critical value Re∗ (for U0 = 30, Re∗ ≈ 120) there exist a range of
wave numbers α corresponding to unstable solutions. Thus, the flow including the part due
to the axial pressure gradient is unstable for Re > Re∗. The critical Reynolds number Re∗
decreases while U0 increases. It is worth remarking that, despite the fact that the basic flow
diverges from the ‘centre’ x = 0, the unstable modes defined by (25) are periodic in the axial
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Figure 3. Contours of constant growth rate S; U0 = 0 and n = 2.

Figure 4. Neutral curve and contours of constant growth rate S for U0 = 30 and n = 2. The
shaded area represents the region in parameter space where unstable solutions exist.

direction with the wavelength increasing with time. Variation of the perturbation amplitudes
in the radial direction is shown in figure 5.

The unsteady flow within expanding cylinder may be unstable if U0 = 0 but the cylinder
rotates. As distinct from the case of not rotating cylinder, in this case the instability region
is close to the horizontal axes so that the unstable modes may correspond to any small wave
number α while there is a maximal wave number for instability for any Re > Re∗.

5. Concluding remarks

In the present paper, we have applied the so-called direct approach to separate variables in the
linear stability equations. As the result, we have defined several classes of the exact solutions of
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Figure 5. Eigenfunctions for U0 = 30, n = 2, α = 2, Re = 200; f, g and h are respectively the
amplitudes of the radial, azimuthal and axial components of perturbations. The thick solid line
represents the absolute value of f or g or h; the thin solid and dashed lines represent respectively
the real and imaginary parts.

the Navier–Stokes equations, for which the linear stability problems are exactly solvable, and
determined the corresponding forms of perturbations and equations with separated variables.
It should be noted that this is the first success in the rigorous stability analysis for a non-
parallel unsteady flow that reduces the exact disturbance equations to an eigenvalue problem
of ordinary differential equations. This should help in furthering current understanding of
the nonparallel flow instability physics and can provide a necessary foundation for many
approximate approaches used so far. The results from exactly separable stability problems
can be used for testing various assumptions and simplifications on which those theories are
based.

We extended the analysis to solve numerically the eigenvalue problems for some flows.
The results include determining the growth rates, instability regions in parameter space
and critical Reynolds numbers. Thus, we presented the nonparallel unsteady flow stability
problems solved via separation of variables. In addition, we found that, for some classes of
perturbations, the eigenvalue problems can be solved analytically. Those unique examples
of exact (explicit) solution of the nonparallel unsteady flow stability problems provide a very
useful test for methods used in the hydrodynamic stability theory.

The general forms of the basic flows, which have been obtained from the only requirement
of separability of the corresponding stability problem, are richer than those remaining after
specification to the exact solutions of the Navier–Stokes equations. Thus, using the approach
accepted in many stability studies, where the form of the basic flow is chosen quite freely to
approximate the physical situation of interest, we could considerably enrich the list of relevant
flows.

It should be also noted that in some studies the stability analysis is restricted to the two-
dimensional perturbations even though an analogue of the Squire theorem cannot be proved
(see, e.g., Griffond and Casalis (2001), Joslin (1996)). Such analysis cannot be complete
since it enables one only to show that the flow is susceptible to instability, if the growing
perturbations exist, but a stability of the flow cannot be proved. We found that application
of our algorithm of separation of variables with a specification of the disturbance field to the
two-dimensional perturbations may lead to new possibilities (other forms of basic flow and
perturbation fields), but we do not consider these results here.
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